24. Asymptoten

Eine Asymptote ist eine Kurve oft eine Gerade, an die sich der Graph einer Funktion annähert! Die Gleichung dieser Kurve ermittelst du mithilfe des Globalverhaltens!

1. e-Funktion:

Diese Regeln helfen dir bei der Bestimmung der Gleichung der Asymptote:

A. Fall:
$$x \to +\infty$$
, $n \in \mathbb{N}$: (x ist positive und steigend)
$$\frac{x^n}{e^x} = x^n \cdot e^{-x} \to 0, \text{ wie } z.B. \frac{x^3}{e^x}, \frac{x^4}{e^x}, ... \to 0$$

$$x^n \cdot e^x \to +\infty, \text{ wie } z.B. x^3 \cdot e^x, x^4 \cdot e^x, ... \to +\infty$$
2. Fall: $x \to -\infty$, $n \in \mathbb{N}$: (x ist negative und fallend)

a) n ist eine gerade Zahl:
$$\frac{x^n}{e^x} = x^n \cdot e^{-x} \to +\infty, \text{ wie } z.B. \frac{x^3}{e^x}, \frac{x^4}{e^x}, ... \to +\infty$$

$$x^n \cdot e^x \to 0, \text{ wie } z.B. x^3 \cdot e^x, x^4 \cdot e^x, ... \to 0$$
b) n ist eine ungerode Zahl:
$$\frac{x^n}{e^x} = x^n \cdot e^{-x} \to -\infty, \text{ wie } z.B. \frac{x^3}{e^x}, \frac{x^4}{e^x}, \frac{x^4}{e^x}, ... \to -\infty$$

$$x^n \cdot e^x \to 0, \text{ wie } z.B. x^3 \cdot e^x, x^4 \cdot e^x, ... \to 0$$

Uebe die Gleichung $f(x) = 6 - x^{\frac{1}{2}} e^{x^{\frac{1}{2}}}$ $\lim_{x \to +\infty} f(x) = -\infty$	$\lim_{X \to -\infty} f(x) = 0$ $\lim_{X \to -\infty} f(x) = 0$ $\lim_{X \to -\infty} y = 0$		
Übung: \(\(\chi_{(x)} = -\)	d		siehe Meeting!

2. In-Funktion:

Diese Regeln helfen dir bei der Bestimmung der Gleichung der Asymptote:

1. Fall:
$$X \to 0$$
, $n \in \mathbb{N}$, $n \ge 1$: 2 3

· $\frac{X^n}{\ln(x)} \to -\infty$ wie $Z \cdot B \cdot \frac{X}{\ln(x)}$, $\frac{X}{\ln(x)}$, ... $\to -\infty$

· $x^n \cdot \ln(x) \to 0$ wie $Z \cdot B \cdot x^2 \cdot \ln(x)$, $x^3 \cdot \ln(x)$, ... $\to 0$

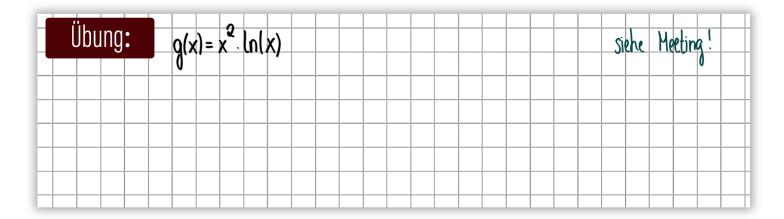
2. Fall: $X \to +\infty$, $n \in \mathbb{N}$, $n \ge 1$: 2 3

· $\frac{X^n}{\ln(x)} \to 0$ wie $Z \cdot B \cdot \frac{X}{\ln(x)}$, $\frac{X}{\ln(x)}$, ... $\to 0$

· $x^n \cdot \ln(x) \to +\infty$ wie $Z \cdot B \cdot x^2 \cdot \ln(x)$, $x^3 \cdot \ln(x)$, ... $\to +\infty$

$$\lim_{X \to 0} f(x) = -\infty \qquad \lim_{X \to +\infty} f(x) = 0$$

$$\lim_{X \to 0} f(x) = -\infty$$



Aufgabe:

Gebe, wenn möglich, die Gleichung der Asymptoten an:

a)
$$f(x) = \frac{6x^2}{e^x}$$

b)
$$g(x) = 3x^3 \ln(x)$$