23. Beschränktes Wachstum

Bei dem beschränkten Wachstum handelt es sich um einen speziellen Wachstumsprozess bei dem sich z.B. eine Population einer natürlichen Schranke S annähern. Bei Funktionen, die einen solchen Wachstumsprozess beschreiben, nimmt der Abstand, also die Differenzen, zwischen der Schranke S und dem Bestand zum Zeitpunkt t exponentiell ab.

Also gilt:
$$f(t) = 5 - c \cdot a^t$$
 bew. $f(t) = 5 - c \cdot e^{k \cdot t}$

In e-Funktion umgewandelt

 $c = 5 - f(0) \rightarrow Schranke - Anfangsbestand$
 $k = ln(a)$, $k < 0$

Typische Aufgabenstellungen:

Die Bevölkerung eines Stammes kann durch beschränktes Wachstum mit der Schranke S=1000 dargestellt werden. Zu Beginn hat der Stamm 200 Bewohner, nach 5 jahren sind es 600.

1.) Funktions		t ((t)				_
C= \000 - 200 \$ - 000 - 200	= 800 m · o ^t	(r(5/60)				
600 - Y000 -	800 · a 5 -1000					
$- \cos - \cos$	5 :(-800 \$\[\frac{1}{2}\]					+
0.5 = a 0.87 ≈ a						
18 - COON = (3)]	t 48,0 00					
f(t) = 1000 - 8	100 · e ln(0,87)· t 100 · e - 0,14· t					
= 1000 - 8	500 · e - 0,14·t					

2.) Fu	nktion	swert	e bei	rechne	n:															
	→ Wie						kerw	ng	na	ch	8	Jak	rer	١ <u>;</u>						_
	[(8) = NO	00 - 800	-011	1.8																
	- 7:																			
2\ \ \ \	1 1			1. 1																
3.) W									_	+	_				_	\dashv		_		_
-	→ Wie	grof	ist is	die	W	ichs	tun	isge	schu	NiN	dig	jkei	t 1	ad	ր կ	To	ige	ηį		
	→6	eschu	pindig	keit	aesi	uch	Ł→	Ab	leitu	Jm							•			
				'																
	(t)	- 1000 -	9.008	0.1	ùŧ.					_										
	Life	1 X 1)	11.0												-				
	6,10	- ///	17.88 G	-O,Ju·t																
		\ ≈ (b)																		
									_	\dashv	_					\dashv				
					1					- 1										

Übung:

Bienenstamm, der zu Beginn 300 Bewohner hat, hat nach 3 Jahre bereits 800. Die Schranke liegt bei S=1500.

a) Stelle die Funktionsgleichung auf.

siehe Meeting!

- b) Wie viele Bienen sind es nach 4 Jahren?
- c) Wie groß ist die Wachstumsgeschwindigkeit im 2. Jahr?

Aufgabe:

Eine Ameisenpopulation kann durch beschränktes Wachstum mit der Schranke S=100000 dargestellt werden. Zu Beginn hat die Population 1300 Ameisen, nach 3 Jahren sind es bereits 25000!

- 1.) Stelle die zugehörige Funktionsgleichung der Form $\{(x) = 5 c \cdot e^{k \cdot t} \text{ auf } \}$
- 2.) Wie groß ist die Population nach 10 Jahren?
- 3.) Wie groß ist die Wachstumsgeschwindigkeit nach 15 Jahren?